Occupational Audiometric Testing
Part 1: Introduction

Thomas W. Rimmer, ScD, CIH
Fay W. Boozman College of Public Health
University of Arkansas for Medical Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/2.5/

Scope of instruction

- Purposes
- Equipment and environment
- Procedures and personnel
- Dealing with problems
- Interpretation of results

Purposes for audiometric testing

- Determine worker’s hearing status
- Identify greater-than-normal hearing loss
 - Identify sensitive workers
 - Identify poorly protected workers
- Educate and motivate the worker
- Provide proof of hearing conservation effectiveness

Audiometric process outline

- Instrument is audiometer
- Measurements
 - Lowest audible sound determined (threshold)
 - Tests over multiple frequencies
 - Each ear separately tested
 - Initial test is called baseline
 - Subsequent tests annually

Audiometers

- Manually operated
 - Inexpensive but labor intensive
 - Most training needed
- Automatic
 - Stand-alone types
 - Computer-based
 - Expensive, but simple to operate

Photo used with permission of Audiometrics, Inc.
Procedures

- Pure tones used
 - 500, 1000, 2000, 3000, 4000, 6000, [8000] Hz
- Subject indicates whenever tone heard
- Sound level decreased to inaudibility, then increased back to audible level
- Lowest audible tone at each frequency recorded as threshold

Audiometric Environment

- Low noise to avoid threshold elevation
- Normally inside special booth
- May test outside booth
 - Claustrophobic subjects
 - Occasional testing
 - Avoid clicks, squeaks that give clues

Background Noise Levels

- Measured with octave band analyzer
- OSHA limits are marginally acceptable
- American National Standards Institute (ANSI) should be goal

<table>
<thead>
<tr>
<th>Frequency</th>
<th>OSHA</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>40</td>
<td>21</td>
</tr>
<tr>
<td>1000</td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td>2000</td>
<td>47</td>
<td>34</td>
</tr>
<tr>
<td>4000</td>
<td>57</td>
<td>37</td>
</tr>
<tr>
<td>8000</td>
<td>62</td>
<td>37</td>
</tr>
</tbody>
</table>

Audiometric personnel

- Trained technician
 - Certified course (CAOHC - Council for Accreditation in Occupational Hearing Conservation)
 - Locally supervised
- Professional supervisor
- Audiologist
- Specialist physician
- Occupational physician

Occupational Audiometric Testing
Part 2: Quality Control
Quality control for audiometry

- Instrument calibration
- Procedural consistency
- Subject factors
- Goals
 - Accuracy
 - Consistency

Instrument calibration

- Daily sound level check
 - On an individual
 - On an instrument
- Daily listening check
 - Static, distortion, etc
- Annual instrument calibration
 - Only adjust if necessary

Quality control - procedures

- Instructions
- Headphone placement
 - Placement and removal by technician, not the subject!
 - Place and remove from front
 - Check to ensure headphone centered over ear canal
 - Check with last year’s results

Instructions to subject

- Emphasize purpose of test
 - To see if hearing is changing
 - To determine the softest sound the subject can hear
- Describe what will be heard
 - Soft beep-beep-beep sound
 - At first will be louder, then softer
- Explain action needed
 - “When you hear the beeps, press and quickly release the button”

Instructions (2)

- Be consistent with instructions
 - Have them written down
 - Give same instructions to all subjects
 - Provide in the subject’s language
 - Offer to discuss results
 - Offer to answer questions
 - Re-instruct if necessary
Quality control – TTS
- Temporary hearing loss (TTS - temporary threshold shift)
- 14 hours away from noise to minimize
- When to test to avoid TTS
 - Beginning of work shift (before exposure)
 - During work shift if protected
 - Good hearing protection will be adequate to avoid TTS

Quality control – ear blockage
- Cold, allergy, sinus problems
- Collapsing ear canal
- Impacted earwax

Quality control – Instruction compliance
- Language barriers
- Misunderstanding of purpose
- Fatigue and sleepiness
- Deliberate lack of cooperation

Quality control – ear differences
- Cross hearing
 - 40 dB or more difference between ears
 - Better ear may hear sound before poorer ear
 - Poorer ear threshold inaccuracy
 - Corrected by masking noise in better ear
 - Requires special equipment
 - Requires special training - audiologist

Summary
- Procedures, personnel, environment
 - Threshold determination, multiple frequencies
 - Quiet location (normally special booth)
 - Technician to test, specialist to supervise
- Quality control
 - Calibration and procedures
 - Subject instructions
 - Other subject factors
Interpretation of results

- Comparison of annual to baseline, one ear at a time
 - Threshold_{annual} - Threshold_{baseline} = threshold shift

<table>
<thead>
<tr>
<th></th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline, RE</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Annual, RE</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Threshold shift</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Standard Threshold Shift (STS)

- ≥10 dB average shift at 2, 3 & 4 kHz
- Each ear computed separately
- ≥10 dB average shift in either ear is STS
- Either average shifts or subtract threshold averages

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline, RE</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Annual, RE</td>
<td>25</td>
<td>35</td>
<td>35</td>
<td>31.7</td>
</tr>
<tr>
<td>Threshold shift</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>11.7</td>
</tr>
</tbody>
</table>

Other factors in STS determination

- Test error or short term loss
 - Retest allowed within 30 days
- Age correction allowed
 - Subtracts normal aging loss from threshold shift

<table>
<thead>
<tr>
<th></th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>2.3</td>
<td>8.6</td>
<td>11.7</td>
<td>19.0</td>
</tr>
<tr>
<td>F</td>
<td>2.0</td>
<td>4.3</td>
<td>7.7</td>
<td>11.7</td>
</tr>
</tbody>
</table>

STS - work related?

- Determination by health care professional
- Factors for determination
 - Workplace noise exposure
 - Hearing protection on the job
 - Non-occupational factors
 - Noisy hobbies, sports, other jobs
 - Lack of protection
- Only make determination of non-work-related if no significant contribution to hearing loss due to workplace factors
STS actions
- Notify worker in writing within 21 days
- Re-train and re-fit hearing protectors
- Change to new baseline if STS persistent
- Possibly record as occupational illness or injury
- Refer for medical evaluation if ear infection caused/aggravated by HPD

Baseline revision
- STS - if present on two consecutive audiograms
- Improvement - ≥5dB average (2,3,4 kHz) on two consecutive audiograms
- General rules:
 - Revise to the better (or earlier) audiogram
 - Revise each ear separately
 - Revise all frequencies in each ear together
 - Subject to professional judgment

Recordability of hearing loss
- Meets all STS requirements and
- Average hearing level ≥25 dB at 2, 3 & 4 kHz in the same ear
- Recording requirements
 - Within 7 days of test on OSHA 300 log
 - May later be deleted if change isn’t permanent

Occupational Audiometric Testing
Part 4: Impairment & Referral

Determination of hearing impairment
- Average thresholds at 0.5, 1, 2, & 3 kHz
- Determine degree of impairment, if any
 - 0-24 dB, normal range
 - 25-39 dB, mild hearing loss
 - 40-54 dB, moderate loss
 - 55-70 dB, moderately severe loss
 - 70-84 dB, severe loss
 - >85 dB, profound loss
Percentage of hearing loss

- Average thresholds at 0.5, 1, 2, & 3 kHz
- Subtract 25 dB from result (normal hearing)
- Multiply result by 1.5%
- Repeat for each ear

<table>
<thead>
<tr>
<th></th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>Avg</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right E</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>40</td>
<td>27.5</td>
<td>4</td>
</tr>
<tr>
<td>Left E</td>
<td>20</td>
<td>30</td>
<td>35</td>
<td>45</td>
<td>32.5</td>
<td>11</td>
</tr>
</tbody>
</table>

Binaural impairment calculation

- Since hearing isn't averaged by ears, consider better ear more strongly
- Multiply loss in better ear by 5
- Add loss in poorer ear
- Divide total by 6 for binaural loss
 \[(4\% \times 5 + 11\%) = 31\% \]
 \[31\% + 6 = 5\%\]

Problem audiograms - medical

- Large shift in short period
- Large shift in one ear only
- Ear pain, dizziness, onset of tinnitus

Problem audiograms - measurement

- Cross hearing situation
- Uncooperative or difficult subject
- Hearing impaired subject

Referral to specialist

- Medical problems
- Employer payment?
- Measurement problems
- Interpretation problems
 - Standard threshold shift - work related?
 - Recordable on OSHA log - work related?
 - Baseline revision
Recordkeeping

- What audiometric records must be kept
 - Name of employee & examiner, date of test
 - Threshold results
 - Calibration date of audiometer
 - Noise exposure assessment of employee
- How long to keep
 - OSHA: duration of employment
 - Others: extended period
- Other records to keep
 - Background noise, hearing history, training of examiner, daily calibration log

Summary

- Interpretation
 - STS calculation - 10 dB shift @ 2,3,4 kHz
 - STS actions and recordability
 - Impairment - 500 to 3000 Hz, >25 dB
- Referral of problem audiograms
 - Medical
 - Measurement
- Recordkeeping